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Using an array of x -probes aligned in the plane of mean shear in the turbulent far 
wake of a circular cylinder, instantaneous velocity vector patterns are obtained from 
which stream-function approximations and sectional streamlines are derived. 
Conditional patterns obtained using different methods for detecting the organized 
motion are essentially independent of the particular method used. The spatial 
arrangement of the organized motion about the flow centreline varies in a continuous 
manner between opposing and alternating modes, the latter being nearly twice as 
common as the former. Results presented include conditional patterns for the 
opposing and alternating modes and the relative contributions made by each mode 
to the Reynolds stresses. A modified Rankine vortex kinematic model, based as 
much as possible on experimental data and incorporating both modes, yields mean 
velocity and Reynolds stress distributions which agree well with experiment. A 
quasi-three-dimensional version of the model implies that large spanwise vortices 
and shear-aligned double rollers represent the same three-dimensional organized 
motion from two different viewpoints. 

1. Introduction 
Flow visualizations (e.g. Taneda 1959; Papailiou & Lykoudis 1974; Wlezien 1981 ; 

Cimbala 1984, 1985) and hot-wire measurements (e.g. Grant 1958; Townsend 1979 ; 
Mumford 1983 ; Browne, Antonia & Bisset 1986 ; F e d  i Vidall986) in the turbulent 
far wake of a circular cylinder have highlighted the existence of large-scale organized 
motions often alternating about the centreline. The primary vortex street is usually 
of the KarmQn type, although observations of Symmetrically arranged vortices have 
been reported in the near wake (e.g. Wygnanski, Champagne & Marasli 1986). In the 
far wake, the alternating arrangement seems to prevail, but the motion is much less 
regular than in the near wake. Wygnanski & Petersen (1987) have noted that the 
linear modes of instability in the wake are the same as in the plane jet (mean velocity 
profiles in both flows have two inflection points). The topological information 
obtained by Antonia et al. (1986) and the measurements of Oler & Goldschmidt 
(1981, 1982) and Thomas & Goldschmidt (1986) support the existence of an 
alternating pattern in the far field of the plane jet, as in the far wake. 

There is flow visualization evidence (Keffer 1965; Antonia & Fulachier 1986), 
however, to suggest that the organized motion in the far wake is sometimes 
symmetrical, with vortices opposite each other across the centreline. Keffer (1965) 
attributed the lack of correlation between bulges on opposite sides of the centreline 
to the fact that they could be either alternately spaced or arranged symmetrically. 
This observation is also supported by photographs of dye streaklines (Antonia & 
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Fulachier 1986) in a water tunnel: streaklines introduced on opposite sides of the 
centreline in the far wake of a cylinder were usually deformed alternately about the 
centreline but symmetrical displacements of the streaklines were also observed to 
occur. 

A linear inviscid instability analysis was carried out by Wygnanski et al. (1986) for 
the turbulent far wake, in which both sinuous and varicose modes of instability were 
considered. Computed streaklines and vorticity perturbation contours for each mode 
showed the expected behaviour but the results for the combination of the two modes 
looked more like those for the sinuous mode, thus highlighting the dominance of the 
sinuous instability, which has a slightly higher rate of amplification than the varicose 
mode. Wygnanski et al. (1986) also drew attention to the fact that the presence of the 
varicose mode not only modulates the streaklines but also contributes to an 
apparently chaotic motion, which is reflected in the observations. 

Although there is abundant evidence of great variety of form and arrangement of 
large structures within flows such as the turbulent plane wake, much of the work to 
date has concerned the eduction of the strongest and most coherent structures (e.g. 
Hussain 1986; Antonia et al. 1986) arranged in the most probable way. For example, 
Browne, Antonia & Bisset (1986) depicted the topology of the organized motion in 
the far wake of a cylinder, relative to an observer translating a t  an appropriate 
velocity, by conditioning the data on spatially coherent temperature fronts which 
occurred alternately about the centreline with the most probable spacing. In  the 
present paper the variety of spatial arrangements of large structures in the turbulent 
far wake of a cylinder is considered and quantified. An array of x -wires, aligned in 
the plane of mean shear, allows the organized motion to be observed either 
instantaneously or conditionally. Two different methods of detecting the organized 
motion are used, and conditional results are presented for the opposing and 
alternating modes. The contributions from both these modes to the Reynolds stresses 
are compared. A numerical vortex model is developed which reproduces many of the 
characteristics of the experimental data such as Reynolds normal and shear stress 
profiles. Incorporation of the alternating and opposing modes is essential to the 
model. Although intended to be two-dimensional, the model implies a three- 
dimensional motion which, in planes parallel to the centreplane, could be interpreted 
as the double-roller structure of Grant (1958) and Mumford (1983). 

Some of the experimental work for this paper was discussed previously in Antonia, 
Browne & Bisset ( 1987 a) .  

2. Experimental details 
The wind tunnel and cylinder have been described in Browne et al. (1986). 

Measurements were made in an open-return low-turbulence wind tunnel with a 
working section of 350 mm x 350 mm, 2.4 m long. The wake was generated by a 
cylinder of diameter d = 2.67 mm spanning the width of the working section. The 
bottom wall of the working section was adjusted to obtain a zero streamwise pressure 
gradient. The free-stream velocity U, was 6.7 m/s and the Reynolds number, based 
on U, and d, was 1170. All measurements were made a t  x/d = 420, where x is the 
streamwise distance measured from the cylinder. At this location, the mean velocity 
half-width L was 12.3 mm, and the mean centreline velocity defect U, was 0.36 m/s. 
Asterisked quantities are normalized by L and/or Un. 

The turbulence intensity a t  x/d = 420 varied from 1.6% on the centreline to a peak 
of 1.9% near L,  decreasing to the free-stream value in the outer regions of the wake. 
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FIGURE 1, Definition sketch and experimental arrangement. 

The present Reynolds number is significantly larger than the value of about 160 a t  
which the wake is considered turbulent (Cimbala 1985; and Cimbala, Nagib & 
Roshko 1988). Evidence that the present flow has reached self-preservation is given 
in Browne & Antonia (1986). The advantage of this flow is that the Kolmogorov 
lengthscales are reasonably large (of the order of 0.4 mm) so that measurements may 
be made quite accurately with hot-wire probes. Nevertheless, the flow is fully 
turbulent (r.m.8. values of longitudinal and transverse velocity fluctuations are up to 
33 % and 25 YO of U,, respectively, and spectra of fluctuations are broadbanded). 

For the present experiment, an array of eight equispaced x -probes was aligned in 
the y or transverse direction, with four x-probes arranged on either side of the 
centreline, as shown in figure 1. Each x -probe provided velocity fluctuations u and 
v, in the x- and y-directions respectively, and adjacent probes were separated by 
7.1 mm. The hot wires were operated at an overheat of 0.6 with constant- 
temperature anemometers built in-house. The signals from the anemometers were 
offset, amplified and then digitized using a 16 channel, 12 bit data acquisition 
system, at a sampling frequency of 3470 Hz per channel (filter cutoff frequency = 
1750 Hz) into a PDP 11/34 computer. Using velocity and yaw calibrations, signals 
proportional to u and v were formed and stored on tape for a record duration of about 
53 s. Mean velocities, 0, for each wire were obtained using a personal computer with 
a data-logging system connected directly to the output of each anemometer. 
Subsequent data processing was carried out on a VAX 11/780 computer. 

3. Detection of organized motion 
Browne et al. (1986) used the same set-up as for the present results except that the 

cylinder was electrically heated. They detected the organized motion by applying a 
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FIGURE 2. Computational scheme used in calculating the large-scale spanwise vorticity w .  

modified VITA procedure to temperature fluctuations, which acted as a passive 
marker of the motion or, more correctly, of a particular spatial feature of this motion. 
In the present work the velocity signals from the array of x-wires are used for 
detection. Two basically different types of detection are used. The first is somewhat 
similar to that used by Hayakawa & Hussain (1985) in the near wake ; it is based on 
detections of peaks in an approximation to the large-scale spanwise vorticity. The 
second focuses on sudden changes in the lateral velocity fluctuation w-signal. In this 
sense it is similar to the detection used in Browne et al. (1986) which focused on rapid, 
large-scale changes in the temperature signals. Here though, we do not use the 
modified VITA procedure. 

3.1. Detection using large-scale vorticity 
In this method, digital (u, w) signals from two x -wires on the same side of the wake 
centreline are searched for positive or negative peaks in the large-scale spanwise 
vorticity. The approximation to the instantaneous spanwise vorticity is 

AV AU 
0 x ---, 

Ax Ay 

where U ( = O+ u)  and V ( = V +  v) are instantaneous signals formed by adding U(y) 
and V(y) to the digital time series of the fluctuations u and w, although V is negligibly 
small in the present case. To convert time separations into distances, we have used 
Az E - U, At, where U, is taken to be the mean velocity (6.5 m/s) at y* = 0.8. Since 
it is assumed that the region of coherent vorticity for large structures is at  least L in 
the x- and y-directions (it is greater than L for conditionally averaged structures 
(Antonia et al. 1 9 8 7 ~ ) ) ~  Az and Ay are chosen to be approximately equal to L,  i.e. 
Ax* x Ay* w 1. Referring to figure 2, which shows the locations of four (U,  V )  data 
pairs, the instantaneous spanwise vorticity at the centre of the data points was 
calculated from 

- 1  1 
w = - [#(v, + v,) -+(v, + v,)] -- [a( u, + U,) - f( u, + U,)] . 

U, At AY 

It is more usual to use Taylor’s hypothesis, viz. Ax = - OAt, for this conversion but 
in the present flow, the variation of fi at x/d = 420 is only small (a maximum of 6 YO) 
so that the present conversion is essentially equivalent to Taylor’s hypothesis. 

One detection is recorded for each continuous patch of data for which IwI > pl, 
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and w is positive or negative depending on whether the signals are below or above the 
centreline respectively, where is a threshold value. The detection point is the 
instant a t  which 101 is largest. Typical traces of w are shown at the top and bottom 
of figure 3(a ) ,  with the computations centred at  y* = 0.88 and y* = -0.85 
respectively. Since there can be local high-frequency variations in w ,  the threshold 
test is suspended for a short time after Iwl first exceeds or falls back below PI; a 
suspension time of about one seventh of the average convection time of the 
structures was used. The value of p, was O.87U0/L for most of the present work, 
giving an average detection frequency approximately equal to the average structure 
frequency (determined from the peak in the spectrum of v), i.e. 125 Hz at x / d  = 420. 
Detection positions are indicated by arrows in figure 3 (a). 

3.2. Detection based on velocity jluctuation v 

A computation window of size (27+ 1) data points is moved point by point through 
the digital record of v-fluctuations, vj, j = 1,2,. . . , N ,  where N is the total number of 
data. The value of the WAG (window average gradient) at  point j is calculated using 

where sign is equal to + 1 or - 1 (depending on whether v is measured below or above 
the flow centreline) to ensure that the value of the WAG is always positive for 
detections. Thus, detections above the centreline are based on sudden decreases in v 
while detections below the centreline are based on sudden increases in v. 

A detection region begins when WAG, > p2v' first occurs (P2 is some threshold 
value and v' the r.m.s. value of v), and ends when WAG < 0. The detection instant 
j, within each detection region is the value of j for which WAG is largest. The size 
of the window (27+1) is not critical, but is set at  about half the number of data 
points required to cover the period of the structures for which a search is being made. 
The minimum reasonable value of p, (typically 0.5 to 0.6) is that for which the 
average detection frequency is approximately equal to the average structure 
frequency. 

The total number n of detections was typically about 7000 for both the large-scale 
vorticity and v-signal detection methods. 

4. Conditional and structural averages 

by 
The conditional average, for n detections, of an instantaneous quantity F is given 

where k represents time (in samples, positive or negative) relative to the detection 
points j,. The subscript k is generally omitted. Therefore 

F = (a> +f,, 
where f, is the component of F not correlated with the detected large-scale motion. 
Iff G F - P  is the instantaneous fluctuation, 

15 

f =f"+.fr, 
FLM 218 
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where f~ # is the fluctuation component due to the detected Iarge-scale motion, 
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and therefore 
F = P+f+fr. 

Also, Us) = h + ( f , g A  (3) 
where f and g can each stand for either u or v. 

If the conditionally averaged structure begins k, data points before the detection 
instant and ends k, data points after the detection instant, then we define the 

- 3 (fg)k? 
1 structure averages as 

<fs>= k , + k , + l - , l  (4) 

- - 
with similar expressions for the other terms of (3). Note that (fg) will be very close 
to the conventional Reynolds stress fi if it is computed from structures that are 
reasonably representative of the flow. 

5. Flow patterns obtained from the x -wire array 
The information obtained from the x -wire array can be used without conditioning 

for ‘visualizing’ large-scale coherent patterns of the flow or, more correctly, a two- 
dimensional cross-section of these patterns in the plane of the array. Instantaneous 
velocity vectors are shown in figure 3 (a )  for a record duration of 18.4 ms. In figure 
3 and subsequent figures the frame of reference is moving from right to left at a 
velocity U, = 6.52 m/s ( z Oat y* = l . O ) ,  and Ax = - i7,At. The vectors are displayed 
in the (Ax*,y*)-plane and identical scales are used for Ax* and y*. In order to 
facilitate visual interpretation of the vector plots made from the eight x -wires, two 
extra rows of vectors were interpolated between each pair of existing rows by fitting 
cubic polynomials in the y-direction to the measured U- (or V - )  values. Such 
interpolated data make visual interpretation easier, and yet do not distort the 
picture suggested by the original data ; eight of the 22 lines of vectors in figure 3 (a)  
are the original vectors. The interpolated data were also used when obtaining all 
contour plots presented in this paper. 

The instantaneous velocity vectors of figure 3 ( a )  delineate a succession of 
rotational patterns on either side of the centreline. No smoothing has been applied 
to this figure and all vectors have been shown. The record duration u ~ e d  in figure 3 (a )  
corresponds to a streamwise distance of about 2.5 average wavelengths. The patterns 
revealed in the figure occur at an average streamwise spacing which is in reasonable 
agreement with the most probable streamwise separation (Ax* % 3.4) of temperature 
fronts (Browne et al. 1986). 

Figure 3(a) ,  which is quite typical of the whole record, reveals that there is a 
significant variation in the streamwise distance between consecutive critical points 
(defined as points where the velocity is zero and the streamline slope is indeterminate) 
of rotational patterns on either side of the centreline. The critical points in figure 3 (a )  
are centres or foci, denoted by the letter C, and saddles, denoted by the letter S. 
Critical points correspond fairly closely to local extrema in the spanwise vorticity 
traces (figure 3a)  : below the centreline for example, centres/foci can be identified 
with maxima while saddle points are close to minima. Centres/foci on one side of the 
centreline usually occur opposite saddles on the opposite side of the centreline thus 
providing the generally alternating structure arrangement. For example, centres/foci 
at C,, and C3+ (figure 3 a ;  subscripts f and - refer to locations above and below the 
centreline) lie approximately opposite saddle points S,- and S3-. The structure with 
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FIQURE 3. Instantaneous velocity vectors, approximate stream functions, and sectional streamlines 
observed in a frame of reference moving at  a velocity U, ( = 0.52 m/s) from right to left. The record 
duration is 18.4 ms. C are centres/foci, S are saddles, subscripts + and - refer to positive and 
negative y-positions respectively. (a) Velocity vectors with traces of instantaneous large-scale 
vorticity centred at y* = 0.88 (above) and y* = -0.85 (below). (b) Equally spaced contours of 
two-dimensional approximate sxeam functions. (c) Sectional streamlines. 

15-2 
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its centre/focus a t  C,,, however, is nearly opposite C,- below the centreline. Figure 
3(a)  also indicates some variation in the lateral distances from centres/foci and 
saddles to the centreline. We can also infer from figure 3 (a)  the possible interaction 
between neighbouring structures, as illustrated by the significant deformation of 
some of the patterns and the likely variability in the strength of the vortices 
associated with different patterns. These latter aspects of the organized motion are 
not addressed in this paper but should be worthy of future investigation. 

Equally spaced contours of approximate two-dimensional stream functions which 
correspond to the instantaneous vectors of figure 3(a)  are shown in figure 3 ( b ) .  The 
divergence aU/ax+aV/ay is not always zero, so the stream function 9 could not be 
calculated by direct numerical integration of the array of [ (U-  U,), Vl-values. An 
iterative procedure was therefore adopted: an initial estimate of 9 values was 
obtained by integration, and then was compared with (U-  U,) for each data 
point and -&,?/ax was compared with V ,  and the values of $ were adjusted until 
adequate convergence was achieved (see Appendix for details). Figure 3 (b)  generally 
allows the flow patterns to be seen more conveniently than figure 3 ( a ) ,  although it 
is evident that  some critical points, S,, and C3+, are poorly defined (and therefore not 
shown) in figure 3(6). 

Lines to which the velocity vectors are exactly tangential, i.e. sectional streamlines 
(see Perry & Chong 1987), can be found by numerically integrating the equation 
dr/ds = V(I), where I is a fluid particle position vector and s is equivalent to  time in 
the frozen frame of the velocity vectors. Thus 

The algorithm for determining sectional streamlines from discrete velocity data is 
given in the Appendix. Figure 3 (c) shows sectional streamlines corresponding to the 
vectors of figure 3(a ) .  The topology presented is richer, in that stable and unstable 
foci, limit cycles, and bifurcation lines now appear. Unambiguous interpretation of 
this topology requires three-dimensional information about all three velocity 
components, however. The topology obtained with the stream-function approach 
can be viewed as the two-dimensional limiting case for mildly divergent data, while 
the topology revealed by sectional streamlines conveys more information but is more 
sensitive to the choice of convection velocity. 

6. Occurrence of alternating and opposing modes 
Velocity vector or streamline patterns similar to those in figure 3 tend to support, 

a t  least qualitatively, the idea that the alternating mode is prevalent. This can be 
illustrated by considering conditional averages from all eight x -probes based on 
detections at only one y* location. Stream functions derived from such conditional 
averages based on w-detections at y* = 0.9 are shown in figure 4. The emerging 
pattern clearly emphasizes the dominance of the alternating mode. To quantify the 
importance of the alternating mode relative to the opposing mode, a study was made 
of the time relationships between detections in the signals from probes on opposite 
sides of the centreline. Curves of the relative probability of At (scaled to  a maximum 
of 1.0) are shown in figure 5 ,  where At is the time difference between detections a t  y* 
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FIGURE 4. Equally spaced contours of conditionally averaged two-dimensional approximate 
stream functions obtained using the v-detection method applied at  y* = 0.9. 
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FIGURE 5. Relative probability of the duration between detections at y* = 0.9 and y = -0.9 
(reference location). ( a )  Vorticity detection method ; ( b )  v-detection method. 

= +0.9 and those a t  the reference position, y* = -0.9. For both detection methods, 
the probability is a minimum at At = 0 and reaches local maxima at At U J L  = f 1.5. 
Since the relative probability is in the range 0.5-0.6 at At = 0, the importance of the 
opposing mode cannot be ignored. As the distributions in figure 5 are continuous, all 
intermediate arrangements between opposing and alternating modes are possible. 
Results essentially similar to those in figure 5 were obtained for detections a t  several 
different y* positions. 

Subsets of detections were selected to  illustrate: (i) the least probable ease 
(opposite mode); and (ii) the most probable case (alternate mode) using the 
information of figure 5. In  order to allow direct comparison of results for the 
alternating mode obtained with the two detection methods, the reference detection 
position was a t  y* = +0.9 for the vorticity detection method and at y* = -0.9 for 
the v-detection method. For (i), simultaneous detections were required at y* = -0.9 
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FIGURE 6. Sectional streamlines calculated from conditional averages obtained with the vorticity 
detection (reference location y* = 0.9): x , detection points. (a) Opposing mode; ( b )  exactly 
alternating mode. 

and y* = 0.9, and approximately 650 detection pairs were found. For (ii), detections 
were required a t  At = 0 for the reference location and a t  both At U J L  = - 1.5 and 
At U J L  = 1.5 for the other y* location. There were approximately 1130 detection 
pairs that  satisfied the first time delay criterion (At U, /L = - 1.5), and 170 detection 
trios that satisfied both time delay criteria. 

Sectional streamlines calculated from velocity vectors conditioned on each of the 
above detection subsets are shown in figures 6 (vorticity detection) and 7 (v- 
detection). It is of some importance to comment on the fundamental agreement 
between the patterns in figure 6 (a )  and those in figure 7 (a )  or that between the 
patterns in figure 6 ( b )  and figure 7(b) because the detection methods used in 
obtaining these figures are appreciably different. The vorticity detection method 
focuses on points of maximum spanwise vorticity (centres or foci). By contrast, the 
v-detection method focuses on saddle points which, as noted earlier, are located on 
the diverging separatrix where the spanwise vorticity is lowest. Temperature fronts 
are aligned approximately with the diverging separatrix and it is therefore not 
surprising that the patterns obtained (Browne et al. 1986; Antonia et al. 1987b) on 
the basis of temperature front detections are in good agreement with those obtained 
using the v-detection. Hussain (1983, 1986) has stated that coherent structures are 
least ambiguously defined in terms of vorticity so that the trigger for educing the 
structures should be based on the instantaneous vorticity signal. This constraint may 
be too restrictive, because the flow topology of the organized motion should comprise 
the essential characteristics of the flow physics, and consequently, a detection 
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FIGURE 7. Sectional streamlines calculated from conditional averages obtained with the v-detection 
(reference position y* = -0.9): x , detection points. (a)  Opposing mode; (b )  exactly alternating 
mode. 

method which focuses on saddle points or diverging separatrices should be as valid 
as one which searches for concentrations of spanwise vorticity. 

In figure 8 (a)  contours of spanwise vorticity w* = AV*/Ax* - AU*/Ay*, calculated 
with (1) but now with the smallest possible Ax* ( x 0.15) and Ay* ( x 0.18 for the 
interpolated data) are presented for the same instantaneous data as in figure 3. The 
region between the saddles S,- and S,- appears as a single distorted structure in 
vector, stream function and sectional streamline plots, but contains two quite 
distinct peaks of vorticity in figure 8(a) .  This structure could be the result of a recent 
merger between two smaller structures (although there are other reasonable 
explanations), but in any case it highlights structure variability, a problem which 
must be addressed in all detection schemes. 

Contours of the conditionally averaged spanwise vorticity (o*), where 

are shown in figures 8 ( b )  and 8 (c) for both the opposing and alternating modes. These 
contours were obtained with the vorticity detection method but similar results were 
also obtained with the v-detection method. Note that although (o*) (also w * )  is 
independent of the choice of convection velocity, there is close similarity between the 
conditional vorticity contours and the conditional streamline patterns, which require 
a convection velocity, for the same data (figures 6 a  and 6b).  Significant levels of ( w * )  
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FIQURE 8. Instantaneous and conditionally averaged spanwise vorticity contours. Normalized 
vorticity values are shown. (a)  Instantaneous, C and S are the centres/foci and saddles obtained 
from figure 3; (b )  conditional for opposing mode (vorticity detection); (c) conditional for 
alternating mode (vorticity detection). 
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are present throughout the structures in figures 8(b) and 8 ( c ) ,  consistent with the 
definition of coherent structures proposed by Hussain (1983, 1986). Figure 8 (a), 
however, emphasizes the large variability within and between structures when 
viewed instantaneously. The widely used approach of generating a single type of 
conditionally averaged structure based on all detections of reasonably well-defined 
instantaneous structures may turn out to be an over-simplification, irrespective of 
the detection method used, whether it be pattern recognition (e.g. Mumford 1983), 
vorticity detection (e.g. Hussain 1986), WAG (as in the present work), or any other 
method. 

7. Contributions to Reynolds stresses from alternating and opposing 
modes 

It has been shown that the alternating and opposing modes do not occur equally 
often (figure 5 ) .  Consequently, contributions to Reynolds normal stresses (2 and 2) 
and shear stress (m) from structures in the two arrangements are also different, but 
they are generally not in direct proportion to the frequency of occurrence. 
Contributions were calculated using sets of v-detections, corresponding to either 
alternating or opposing arrangements of structures, obtained for each probe. For the 
alternating mode, a detection in the v-signal from a given x -probe was accepted if 
there were also v-detections a t  both At U J L  % 1.5 and - 1.5 at Iy*l w 0.9 on the other 
side of the wake. For the opposing mode, detections were accepted if detections on 
the other side of the wake at Iy*l w 0.9 occurred at both At UJL w 3.0 and 0. The 
average number of alternating mode detections was 1.91 times the average number 
of opposing mode detections. 

Distributions of (u2), (v2) and (uv) were calculated for each x -probe in each 
mode, and then averaged over one structure wavelength (Ax* w 3.0) using (4), 
centred on the detection point. The overall properties of thedetected - regions are 
compared with Reynolds stresses in figure 9. Values of (fg) in the figure are 
calculated from 

- - - 

- (fs> = (1.91/2.91)(fg),,ter,,te + (1*0/2*91)(fS)opposite, 
- 

i.e. each (fg) is the sum of the values for the two modeseighted - in proportion to 
- the frequency of occurrence for each mode. Results for (v2) are a little - higher than 
v 2  values, probably because d e t e c t i o n a s  based on v-signals, and (u2) is generally 
a little lower than 2. The values of (uv> and UV are quite close. Figure 9 indicates 
that (for Reynolds stresses a t  least) the combination of the selected regions of 
alternating and opposing structures is quite similar to the flow as a whole. 

Ratios of the contributions from the alternating and opposing modes to each of the 
terms of (3), averaged over one structure wavelength, are shown in figure 10. At each 
(y*J-value the results for the upper and lower sides of the wake are combined. A value 
of 1.91 indicates that the contribution per detection is the same for the two modes. 
Results for ( frgr) (except for the anomalous (u,") a t  Iy*l = 2) are very close to this 
value (figure ~ O C ) ,  as they should be if (f,g,) is uncorrelated with the detected large- 
scale structures. Ratios of the large structure contributions are considerably 
different, however (figure l ob ) .  Structures in the alternating mode contribute far 
more strongly to 3 than to Gal and their contributions to CV" are a t  an intermediate 
level. Ratios are generally larger towards the centreplane of the wake. The results for 
3 are simply explained : structures arranged alternately across the centreline tend to 
reinforce eaeh other's lateral motion, while structures opposite each other, with 
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FIGURE 9. Conditionally averaged normal and shear stresses, averaged over one structure length, 
for the combination of selected regions of alternating and opposing structures. Conventional (long- 
time averaged) Reynolds stresses are also shown (-) : (a )  (u'"> and u*2; ( b )  (v*'> and 2)*2 (c) 

(u*v*) and u*v*. 

- - 
- 

IY*l 
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Ratio alternate mode/opposite mode 

FIGURE 10. Ratios of average contributions to  the terms of (3) from the alternating mod: to 
average contributions from the opposing mode: 0,f = U, g = u; A, V,V; x , u,v. (a) (fg) ( b ) f @  (c )  
<frSr> .  

opposite directions of rotation, tend to cancel each other's lateral motion. Curves of 
C (not shown) for the two modes at Iy*l = 0.87 and 1.44 indicate that fluid at  the 
upstream ends of large structures opposite each other is significantly lower in 
streamwise momentum, possibly because of mutual reinforcement of opposite 
structures in the longitudinal direction. The result is that the ratios of contributions 
to ,ii2 are comparatively small. Since (fg) is the sum of large structure (fi) and 
uncorrelated ((frgr)) components, the ratios of contributions to (fg) from the two 
modes, shown in figure lO(a), always fall between the ratios for the two components 
(figures l o b ,  c). 

Spectra of u and v generated from regions containing structures in either 
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alternating or opposing arrangements were examined, and no significant differences 
were found. The mean longitudinal velocities for the regions were also very similar. 

8. Discrete vortex numerical models of the far wake 
Numerical modelling of turbulent flow may be kinematic or dynamic. In the latter 

case a supercomputer-based numerical solution of some form of the Navier-Stokes 
equations is usually attempted (see the review article by Rogallo & Moin, 1984, for 
example) but in the former case a simplified description of the essential features of 
the flow is usually the main object. Kinematic models such as those presented here 
can facilitate the analysis and interpretation of experimental results, and could 
perhaps contribute to vortex dynamics techniques. One aim was to determine the 
conditions under which large-scale organized motion could be largely responsible for 
the observed profiles of mean velocity and Reynolds stresses. 

The two-dimensional Rankine line vortex was chosen as the basic building block 
of the models. It has been used by Davies (1976) to model kinematically the planar 
near wake of a bluff body and by Oler & Goldschmidt (1982) to model kinematically 
the self-preserving region of the plane jet. The spreading rate of the plane jet is large 
and was accounted for by Oler & Goldschmidt (1982)) while that of the far wake is 
small and is neglected here. 

The equation for the tangential velocity U, is 

r 
U, = -{1-exp[-1.26(r/B,)2]}, 

2nr 

where r is the circulation, r the radial position, and R, the cutoff radius (where U, 
is maximum). The unit of length is the mean velocity half-width L ,  and velocities are 
scaled so that U, = 1. A computer program places a number of vortices at specified 
(x,, y,) locations within (or adjacent to) a two-dimensional computational grid, 
superimposes the U- and - -  V-components of U, for each vortex at  each grid point, and 
then calculates 0, V ,  u2, v2 and m as a function of y. For example, 

where the computational field is p points long (typically 12 points per vortex). The 
rows of vortices are always extended beyond the computational field so that the data 
are equivalent to continuous flow. For the results presented here, the longitudinal 
spacing h is always equal to the experimental value of 3.0, Iq is 5.0 (arbitrary) and 
R, is 1.0 for all vortices. The mean transverse velocity V is ignored as it is always 
many orders smaller than 8. 

The first model was a series of vortices, with circulation of alternate sign, placed 
alternately across the centreline at  lycl = 0.8 (figure l la) .  D(y) was correct but the 
Reynolds stresses were quite wrong, especially m which was virtually zero 
everywhere. The second model was similar except that the vortices were placed 
opposite each other (figure l l b ) ,  but again the stresses were incorrect. 

In previous sections, regions of experimental data with either alternating or 
opposing arrangements of detections were analysed separately, showing differences 
in the way they contribute to Reynolds stresses. A similar idea was adopted for the 
third and subsequent models. The third model was simply the sum of the previous 
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two, in the sense that mean velocity and Reynolds stress profiles were linear 
combinations of the profiles from the two arrangements of vortices, e.g. 

- - - 
u2 = Pu'alternate + (1  -PI U'opposite. 

Values for P in the range 0.6 to 0.7 are indicated by the experimental results (figure 
5 and $ 7 ) .  With /3 = 0.67, the third model predicts the 3 profile quite accurately, but 
the 2 profile is poor and ?BY is still zero. 

Velocity fluctuations u and w measured in the potential flow just outside a 
turbulent wake by Antonia, Shah & Browne (1987~) were found to  be 90" out of 
phase. The same result is obtained from the Rankine vortex models, which is the 
reason why ED is zero. Within a turbulent shear flow, however, the phase relationship 
is generally nearer to  0" or 180" (e.g. Antonia et al. 1986), and this aspect was 
addressed by the fourth model. A phase lag q5 was introduced into the computation 
of U,  i.e. U = - U,sin (6-q5), while V = U,cos6 as before, where 8 = tanp1 
[(y--y,)/(x-x,)] for a given point (x, y). The sign of q5 depends on the sign of r, and 
for r > R, the value of q5 is proportional to (R0/r)' so that the phase lag occurs only 
in the 'turbulent ' zones. The phase lag is applied to  U rather than V because it is 
found in the experimental data that WAG detections in v-signals from adjacent 
probes generally occur at the same time while WAG detections in u-signals occur 
consistently a t  different times. The fourth model also allows for an additional vortex 
convection velocity ( Ucc, K,) to be applied to the inner regions of the vortices where 
r < R,, and reduced in proportion to (R,/r)2 elsewhere, but (U,,, V,,) is not as 
important as q5. It was found that with q5 = 35" and (U,,, V,,) = (0.19,O) the profiles 
of U ,  v 2  and w were reproduced very well, but 2 values were still very low. Sectional 
streamlines computed for this model (similar to figure 14) show the correct pattern 
of foci and saddles (cf. figures 3c and 7), unlike streamlines from the first three models 
which show patterns of centres and saddles. 

It was observed earlier that the apparent distances of large structures from the 
centreline vary considerably (cf. figure 3c), and i t  has long been known (e.g. Grant 
1958) that the conventional autocorrelation coefficient for u remains positive up to 
large x. The fifth model accounts for these two aspects by systematically varying yc 
over groups of six vortices per side, with 0.2 < lycl < 1.5 (average 0.8). The variation 
is antisymmetrical for the group of alternating vortices (figure 12a) and symmetrical 

_ -  
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for the opposing group (figure 12b). The resulting velocity and stress profiles, for 
parameter values of q5 = 4 5 O ,  p = 0.6 and U,, = 0.06, are compared with measure- 
- ments (Antonia et al. 1987b) in figure 13. Agreement is very good, especially for 
v2 and mi. Note that the profiles for 2 and ;;" from the alternating and opposing 
groups taken separately are quite different, and i t  is only their weighted sums that 
are close to the experimental results. The plane jet model of Oler & Goldschmidt 
(1982) only considers the alternating mode, and discrepancies in their values of 2 
and 3 near the centreline are similar to the errors that occur if the opposing mode 
is removed from the present wake model. Sectional streamlines for part of the data 
are shown in figure 14. It can be inferred from these results that a long-wavelength 
variation in u, of a scale larger than the largest vortex-like structures, is responsible 
for both the long positive tail in the measured autocorrelation coefficient and a 
considerable proportion of the measured 2. Townsend (1979) found that vortices 
tend to travel in groups of three to five with similar characteristics, and the present 
model is consistent with that result, but there may be other ways besides a 
systematic variation in yc of modelling the long-wavelength variation in u. 

A kinematic model can be used to examine the performance of detection and 
conditional averaging procedures developed for use on experimental data. The v- 
detection algorithm of $ 3  was applied to data from the fifth model a t  y = 0.85, and, 
as expected, detected every saddle point between vortices. When the velocities are 
conditionally averaged, however, there is no accounting for the variation in yc. 
Therefore it cannot be expected that the contributions from the conditionally 
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FIQURE 13. Profiles of mean velocity and Reynolds stresses from the model with vortices 
located as in figure 12, compared to experimental results : -, model ; --, experiment. 

FIGURE 14. Sectional streamlines for part of the data corresponding to figure 12. The frame of 
reference is translating at U ,  -0.5U0. (a) Alternating mode ; ( b )  opposing mode. 

averaged structures to u2, v2 and iiii (i.e. ,ii2/u2 etc.) will be exactly 1.0 even though 
there is no modelling of small-scale turbulence. The values found for the contributions 
over a range of y were 0.64 .9  for 3, 0.6-1.1 for m, but only 0.15-0.3 for up. 
Experimental values (Antonia et al. 1987b) are about half of these values. Clearly a 
more sophisticated detection procedure applied to the model data would result in 
contributions close to 1.0, and it may be inferred that the experimental values would 
also be much higher in that case. 

As indicated in $5, the magnitude of the divergence aU/i3x+dV/@ is oftm 
significant in the experimental data. The divergence for the first three models was 
everywhere zero, but significant values were found for the fourth and fifth models 
with 9 =!= 0. Since alJ/ax+aV/ay = -aW/az for incompressible flow, the fourth and 
fifth models are, therefore, three-dimensional in the sense that they imply that the 

- _ _  - -  
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FIGURE 15. Sectional streamlines in the (z,z)-plane at y = 1.0 calculated from the quasi-three- 
dimensional model via the continuity equation. Vortex centres in the three (x, y)-planes are 
indicated by 0. 

x = o  

FIGURE 10. Sketch of the inter-relationship between sectional streamlines in the (x, 2)- and 
(z, y)-planes for the quasi-three-dimensional model. Only the upper half of the wake is shown. 

spanwise velocity gradient aW/& is generally not zero. Grant (1958) and others have 
found that the correlation between u-measurements separated in the z-direction is 
significantly negative at  Az x 1.6L, which means that the axes of large spanwise 
structures are limited in length and/or generally at  a considerable angle to the z-axis. 
By assuming that structure axes are often limited in length, it was possible to 
construct a simple quasi-three-dimensional model based on the fourth model 
described above. Three (z, y)-planes containing modified Rankine vortices were 
placed at  three different z-values. One plane was aligned so that one vortex was 
located a t  (zc, y c ,  zc )  = (0,0.8,0), while the other planes were displaced half a 
structure wavelength in z and f 1.G in z, i.e. a vortex was centred at  (xc, yc, zc)  = 
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(1.5,0.8, & 1.6). Velocity components U and V were calculated throughout the three 
planes, and then calculated a t  other 2 values by linear interpolation between the 
planes. (The implied physical picture is a pattern of interlocking spindle shapes 
rotating about axes of length 3.215 parallel to the z-axis). It was assumed that the (x, 
y,O)-plane was a plane of symmetry, i.e. W = 0 in this plane, and then W was 
calculated elsewhere by numerical integration of aW = - (aU/ax+ aV/ay) az. 

Sectional streamlines calculated from U and W in the plane (z, 1.0, z )  are shown in 
figure 15 in a frame of reference moving with the mean velocity of that plane. Very 
similar results were obtained over a large range of y-values provided that the local 
I7 was used for the frame-of-reference velocity. The pattern in figure 15 conforms 
remarkably well to the concept of counter-rotating double rollers with axes nearly 
normal to the centreline of the wake proposed by Grant (1958) and Mumford (1983). 
The relationship between the (x, 2)-plane of figure 15 and the three (2, y)-planes from 
which it was generated is shown in figure 16. Three-dimensional streamlines resulting 
from these data would be quite complex. Note that the double-roller pattern does not 
appear when the U phase delay q5 is zero, i.e. the model implies that  spanwise vortices 
and double rollers are interlinked through the Reynolds shear stress associated with 
large-scale organized motion. 

9. Conclusions 
The velocity signals from an array of eight x -probes were used to ‘visualize’ the 

instantaneous motion in the (2, y)-plane of the self-preserving far wake of a cylinder. 
Vector plots, contours of an approximate stream function, and sectional streamlines, 
in a translating frame of reference, show a succession of large spanwise vortices 
(described topologically as a series of saddles and centres/foci) on each side of the 
wake. 

The structures on either side of the centreline may be arranged alternately or 
directly opposite each other, or in any intermediate arrangement. The alternating 
arrangement occurs nearly twice as often as the opposing one. Two detection 
methods which focus on different features of the structures give essentially the same 
results for the probability distribution of the various modes as well as for other 

Contributions to Reynolds stresses u2, v 2  and TED from regions with alternating or 
directly opposing arrangements of vortices were compared. The biggest differences 
between them are due to the greater frequency of occurrence of the alternating 
arrangement. The alternating arrangement is relatively more important for its 
coherent structure contributions to 3 than to 2, and the contrast between the two 
arrangements is generally greatest near the centreline. 

Although a simple kinematic model based on the Rankine vortex cannot represent 
all aspects of a turbulent shear flow, a, model that incorporates modified Rankine 
vortices in both alternating and opposing modes reproduces many flow properties 
quite well. The success of the model provides, in turn, some justification for a 
‘ coherent structure ’ approach to the analysis of experimental data. Results from 
both experiment and model imply that variability in spatial arrangement of 
structures is an essential flow property. A phase delay in the calculation of the U- 
component generated by each vortex is required in order to obtain the correct profile 
of TZV from the model. A quasi-three-dimensional version of the model implies that 
large spanwise vortices and double-roller structures, inferred from observations in 
the (x, z)-plane, may be two views of the same rather complicated three-dimensional 

properties of the structures. - _  
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structure. This structure can only exist when the average value of Gv" (the coherent 
component of W) is non-zero. 

The support of the Australian Research Council is gratefully acknowledged. 

Appendix 
A. 1.  Iteration process for approximate two-dimensional stream function 

The stream function approximation is generated as an array $ i , j ,  where subscript 
i corresponds to the x-direction a n d j  to the y-direction, for which it is desired that 
a$/ay z U and a$/ax z = - V .  The discrete form of the first equation is 
($i,i+l - $ t , j  + E)/Ay = i( Ui, j+l + U,,i), where E is the approximation error, and 
similarly for the second equation. After several passes through the data in the 
+x-, + y-, -x- and ---directions during which values of $i,j  are altered to reduce E, 
A$i,,(max) (the largest change in any element) and $R = $i,j(max)-$i,i(min) (the 
range of the data) are determined. The computation is halted when A$i,j(max)/$R 
is sufficiently small (i.e. 0.001). 

A.2. Calculation of sectional streamlines using discrete data 
A typical method of evaluating equations (5) is to use a predictor-corrector scheme 
with velocities between the grid points interpolated using splines or polynomials 
fitted in two directions (Perry & Steiner 1987). The present scheme differs in that a 
streamline is moved from its intersection with one grid line to its intersection with 
another in a single step. Mallinson (1987) reports a different implementation of the 
single-step idea. 

The grid box formed by adjacent grid lines should be reasonably square, so, if 
necessary, extra grid points are generated (prior to streamline computation) by 
interpolation in the y-direction. The grid spacing Ax = - U, At will normally be 
sufficiently small since At is small for a suitable sampling frequency. It is then 
assumed that velocities vary linearly across each grid box, which is generally a good 
approximation except when very close to critical points, and is equivalent to 
assuming a constant acceleration between successive intersections with grid lines. 
The assumption of a frozen field of vectors means that pathlines are identical to 
streamlines. It can be shown that a particle of fluid entering a grid box with velocity 
v1 and undergoing constant acceleration to v, a t  the exit point for a time AT, and a 
particle travelling at  constant vl for a time ;AT and then at  v,  for aAT, have the same 
point of exit from the grid box. Therefore it is sufficient to find an exit point r2 = 
(x2,yz) such that 

lr.-r 2 1 -  I Ir2-rtl 

lull b 2 I  ' 
-- 

where ri is the position vector of the intersection between vl and v2 and rl = (x3, yl) 
is the entry point, as shown in figure 17. Since either 5, or y2 is known, depending on 
which side of the current grid box is being tested, the components of v,  are functions 
of either yz or x2 alone by linear interpolation between the known velocities at  the 
grid points. Therefore the unknown component of r2 can be determined algebraically. 
If (i) r2 is located between the end points of the side currently being tested; (ii) the 
sense of v2 is outwards from the box ; and (iii) ri lies within the current box, the point 
r,  is accepted as a valid continuation of the streamline. Successive sides of a grid box 
are tested until the criteria are satisfied. The plotted line is slightly smoothed. 
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1 

FIGURE 17. Grid box for sectional streamline computations. 

Occasionally a streamline is terminated unexpectedly at an ordinary point rather 
than a critical point. The discrete form of the computation is not designed for the 
cases where four adjacent velocity vectors are either very different in direction or else 
exactly parallel, and condition (iii) above may be difficult to satisfy in such cases. 
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